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Abstract 

 
This work concerns the automated checking of solutions in education.  The article discusses the 
structure of a problem as a whole body and of its parts, studies various check approaches, 
introduces problem complexes, suggests methods for creating accurate and consistent problem 
statements and check sets, and touches the automation of the preparation of problem sets and of 
the checking processes. 
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1. Introduction 

Systems for the automated checking of solutions have their origin in programming 
contests. But today they become the means of automation of the teacher’s work. They can be useful 
not only at programming classes. With their help, any teacher can organize a mini-contest or check 
own tests and students’ works faster and easier.   

Having the experience of using and creating the automated checking systems for the 
programming problems, the author extends the corresponding approach onto the non-
programming problems and shows that they also can be checked automatically. In order to make 
the automated checking easier for a wider range of users, its preparation also should be automated. 

• Our aim is to make the automated checking of tests and contests easier for teachers. 
• Problems from various fields can be checked automatically like the programming ones. 
• The preparation of problems for a contest or a quiz should also be automated. 
• Automated systems for preparation and checking are described (not very profoundly). 

• Automation reduces the number of possible errors, ambiguities, and inconsistencies. 

Section 1 contains the necessary mathematical notes along with glosses on what a 
generalised problem, its solution method and results are.  It also shows how the number of check 
cases and the check approach depend on the amount and the type of the problem’s variable and 
constant data, its conditions and restrictions.  

Section 2 discusses various approaches to the checking of solutions. 

In order to create full, explicit and consistent problems (not only for contests with the 
automated checking of solutions but for all quizzes as well) it is necessary to realize the structure 
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of a problem as a union of a statement, specifications and checking means. These are considered 
in Section 3.  The important notion of the problem complex is also introduced here. 

Section 4 is dedicated to questions of the automated preparation of the problem 
complexes. 

 

2. Mathematical and common-sense basis 

2.1 Problem, solution and result 

Let a problem be represented by a triad < D, C, R >, where D is known data, C is 
conditions necessary for creating a correct solution, and R is unknown values to be found out 
during solving. Then the solving method M is a function, which creates the result R from the initial 
data D and the conditions C.  

М: D  C  R. 

Solution method (algorithm) is a sequence of inter-connected and inter-dependable 
components (R1, … RN); each step Ri  is based upon steps R[0…i - 1].  The sequence (R1, … RN) is 
not bound to be strictly linear, on the contrary, in most cases it only can be depicted by a graph 
structure.  

Some people think that “to solve a problem” means “to find a correct answer” and 
sometimes, if the solving method is obvious, they are almost right.  Still, the method itself can be 
the point to find.  For example, in IQ tests (see, for example, Eysenck, 1962) and the like, an often 
task is “find the rule and then apply it” and figuring out the rule is much more difficult than 
retrieving the answer with the help of this rule.  In this case, the outcome is not the result but only 
the means to judge about the correctness of the invented method.  

 

2.2 Power and dimension of the input 

Domain D of all known data can be divided into two parts: invariables Dinv and 
variables Dvar.  Invariable data are stated in the problem’s description and never change.  On the 
contrary, variable data are provided by the check cases (see Section 2.3.3. Check cases) and can 
change from case to case not only in value but in number, too.  

 

2.2.1 No variables 

Obviously, there exist problems with no variable input at all. Almost all non-
programming problems are like this.  In such a case, the power | Dvar | = 0.   

If such a problem is correctly stated, it must have the unique correct answer.  As a rule, 
if there are several correct answers, it means that the problem description is not full or consistent.  
For example, a partial case is not correctly pointed out1 or no explicit specification of a suitable 
output is provided2.  

                                                           
1 For illustration, consider the problem: “Two segments on a plane are given by coordinates of their ends. 
Define their mutual position: (a) do not touch; (b) intersect; (c) partly overlap; (d) one of them contains 
another”. It is obvious, that the partial case of a zero-length segment can meet both b and d variants.  It 
would be better to divide the output domain not into four but into three equivalence classes: “… (a) do not 
touch (no common points); (b) intersect (1 common point); (c) partly or fully overlap (more than 1 common 
point)”. 
2 For example, in an English language test, one can give answers “I cannot…” or “I can’t…”  Both are correct, 
but if the output description is not worded accurately, a mistake can be reported erroneously.  
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2.2.2 Variables as the means to split a problem 

In programming, any “good” algorithm has to be mass-oriented, i.e. it must be potent 
to solve not a single problem but a whole class of similar problems. Therefore, presence of a 
variable input is characteristic for programming problems.   

Still, problems with variable input data can be met not only in programming but in 
other fields, too.  For example, several variants of a quiz may include the same task with different 
numeric values3.   

If there are several variables V1, … VN, each of them having its own domain Di; then 
the whole variable domain Dvar can be represented as a direct product of these domains:  

Dvar = [D1× …× DN].  

And the dimension of the domain Dvar is the sum of dimensions of D1, … DN:  

dim Dvar  = dim D1 + …+ dim DN. 

If we take one value for each variable, we make a section of the domain Dvar. The initial 
problem with a restricted input domain is also a problem, but with no variables now. Thus, we can 
reduce a problem with a variable input to a problem with the invariable input.  

 

2.2.3 Constant and known number of variables 

Now let us consider one variable Vi. The dimension of its domain can vary in a wide 
range from 1 to any value having the practical sense.  In simple words, this dimension denotes the 
number of variable’s components.  

As a rule, the upper bound for possible dimensions of a variable’s domain is specified 
explicitly for all variables in the problem’s description, it is known before the checking process is 
started. It can be considered as a constant belonging to the invariable input Dinv.  

Also, the upper bound for some variable can be specified not in the description but in 
check cases.  Then it belongs to Dvar, is a variable itself and, thus, must have an upper bound, too.  
Let us call a changeable upper bound the sub-bound.  

An example of such a situation is “N integers A1, … AN are given (1 < N < 100 )…”.  
Here variable A consists of N components A1, … AN and, therefore, its dimension equals to N. 
Variable N is the sub-bound of the current dimension, and 100 is the invariable upper bound 
common for all possible sub-bounds. Note that each Ai must have its own upper limit too, but this 
example does not mention any.  

A sub-bound is variable but becomes known when the check starts.  

 

2.2.4 Indefinite length of the input 

Now let us consider the case when the actual dimension of a variable’s domain stays 
unknown until the end of the checking.   

Example is “No more than 100 integers are given…” Here we do not know how many 
components A1, … AN the actual input has.  We can preliminary write all of them down and count 
them; then we will know the current sub-bound N (not given but calculated). Thus, we return to 

                                                           
3 In such a case, each variant can be checked as an independent one and, therefore, can represent the single-
answer case.  
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the case of a known sub-bound. On the other hand, we can process these components not using 
the value of N at all.  The difference can be illustrated by cycles:  

for 1 to N do… and  do… until <the end is detected>. 

In programming, the second way is preferable since it means that the input file must 
be read through only once. And the first way means that reading is performed twice, which is 
inefficient if the file is large.   

Another example of the situation when the number of variables must be retrieved from 
the input is “A graph is specified by the list of its edges, which are pairs of vertex numbers”.  

Let us note that theoretically both the number of variants and their range can be 
infinite. Nonetheless, practically it is impossible.   

 

2.3 Power of the output 

The number of possible correct answers |R| is very important for our discussion of the 
automated checking. Here we only mention the possible variants. And the influence of the 
multiplicity of possible correct answers onto the checking process is discussed in Section 2.3.4 
Checking and judging.   

|R| = 0 means that the problem is stated erroneously. No correct answer is possible.  
Nothing is to be checked. Such problems must not appear in any test, quiz or contest. Some ways 
to avoid such errors are discussed in Section 3.1 Problem’s description.  

|R| = 1 means that the solution exists and it is unique. In this case, the checking is 
obvious and easy: it is sufficient to ascertain that the output coincides with the given exemplar 
answer.   

|R| > 1 means that the problem has several correct answers. There can be three cases: 

 |R| is finite.  For example, “The anterior part of a shoulder is called a collar bone 
or a clavicle”.  

 |R| is infinite but denumerable. For example, “Any even integer”.  

 |R| is infinite and non-denumerable. For example, “Any real value from the 
interval [0 .. 1]” or “Any point on the plane within the circle with the centre in (0, 0) 
and radius 1”.   

Let us note that restrictions of the computer data representation obviously reduce the 
case of infinite (denumerable or non-denumerable) |R| to the case of finite |R| > 1. The only 
difference between them is in approaches to the checking.  

 

3. Checking and correctness 

3.1 Solution: Method or result? 

Now let us return to the difference between an outcome and a solution. What should 
we check? Should the result or the method be of most interest? 

The well-known joke (unfortunately, its author is unknown to us) illustrates that an 
erroneous method also can produce a correct answer: 

– Reduce the fraction 16/64.  

– 1/4.  
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– OK! How do you count? 

– I’ve crossed out the 6’s above and below.  

Thus, we have to remember that the aim of checking is to form a judgement about the 
method not the outcome.  

 

3.2 Method is a White box 

So, how can we check a solution method?  

One way is to check the description of the method. For example, “To find a Fibonacci 
number, sum two previous Fibonacci numbers, starting from two units”.  Or, mathematically, “For 
any natural k > 1, Fibk = Fibk-1 + Fibk-2 , while Fib0 = Fib1 = 1”. These are two equivalent 
descriptions of the same method.  

Still, there can be equivalent but different methods.  For example, in order to find the 
greatest common divisor (G.C.D.) of two natural numbers, one can a) use the Euclidean algorithm4 
or b) find all natural devisors for both numbers separately (by trying to divide them by each 
natural), compare these sets of divisors, and find the greatest common one. These methods are 
obviously equivalent, while the first one is much more efficient than the second.  

If it is important that the solution method be a particular one, the author of the 
problem can shift the focus from the result to the method: not “Find the G.C.D. of two naturals” 
but “Describe the Euclidean algorithm of finding the G.C.D.”. In this new problem, what earlier 
was a method (one of several possible ones) became the result.   

Although there exist methods for automated verification (starting from Floyd (1967), 
Hoare (1969) and Anderson (1979), these methods have been developed by their followers), our 
aim is to make the checking easier for a wider circle of teachers. Therefore, we seek for less 
complicated and laborious way of checking. The mentioned verification theory and methods are 
the instruments for designers of the automated checking systems not for users of these systems.  

So, let us consider another way of checking.   

 

3.3 Method is a Black box 

The other way to check a method is to inspect its behaviour: “if we feed a valid input, 
what output shall we get?” This approach is called Black-box testing (was introduced by Ashby, 
1956).  

The theory of Black-box testing is well developed for computer programs (see, for 
example, Ashby, 1956, Beizer, 1995 or Ponrod, 2014); we shall try to adopt some of its methods for 
developing the theory of the automated checking in education.  

 

3.3.1 Correct or incorrect? 

How can we decide that the method under examination is correct? For the behavioural 
approach, the answer is “a method is correct if and only if it always produces a correct outcome”.  
But what is the correct outcome? It is the result of applying a correct method M to the valid input 
data: 

                                                           
4 The Wikipedia (https://en.wikipedia.org/wiki/Euclidean_algorithm) gives its detailed description.  

https://en.wikipedia.org/wiki/Euclidean_algorithm
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М: D  C  R. 

Therefore, we need some exemplar method. We declare this exemplar method Mex correct 
and check whether the method under examination is equivalent to Mex. In other words, we believe 
that method M is correct if and only if, being applied to the same inputs, methods M and Mex 

produce the same results.  

To make the matter more intricate, there is a situation with multiple correct answers (see 
Section 1.3 Power of the output). In the case of |R| > 1, the exemplar method should provide all 
possible correct outputs while the method under examination may produce only one of them. So, 
the equivalence should be not between two methods M and Mex but between the method M and 
only a sub-method of the method Mex.   

Note that we cannot prove correctness both of a method and of its outcome simultaneously.  
We only can prove that two methods are or are not equivalent. Here is the source of unavoidable 
difficulties: if the exemplar method is erroneous (intentionally or unintentionally), it produces the 
erroneous outcome, which nonetheless is declared “correct”. Therefore, henceforth we call the 
exemplar method’s outcome not correct outcome but exemplar outcome.  

Irrespectively to its actual correctness or erroneousness, the exemplar outcome is the 
base for judging about correctness of a method under examination. Therefore, it is important to 
eliminate the possibility of errors in the exemplar method and the exemplar outcome. And here 
an automated system for preparation of problem complexes can be of great use (see 
Section 4.2 Automated systems for preparation of problem complexes). 

 

3.3.2. Exemplar input and output 

How can we get an exemplar outcome? Should we apply the exemplar method to all 
possible inputs? Obviously, this way is too generous.  It is sufficient to apply the exemplar method 
only to some characteristic representatives.  

The domain of valid inputs D can be split into equivalence classes. Input data belong 
to the same equivalence class if they generate (with the help of exemplar method) the same (or 
equivalent) outcomes.  Some of these outcomes should be “good”, some “bad”. Each equivalence 
class is considered to be a partial case. Only one representative from each partial case is sufficient 
for the exemplar input (see, for example, Beizer, 1995, or Myers, 1979 or 2011).   

If the domain D is infinite (see Section 1.2 Power and dimension of the input) than 
some (or even all) of the equivalence classes can be infinite too.  If the number of classes is finite, 
getting one representative from each class forms a finite set of exemplar inputs.  Still, there can be 
infinite number of equivalence classes.  In order to restrict this number, additional restrictions 
should be imposed on the domain of valid input data.   

The partition of the domain D into equivalence classes can be done manually basing 
on the characteristics of the subject domain and the problem itself or automatically through the 
inner properties of the exemplar method.  

In programming, such exemplar method that predicts exemplar inputs and outputs is 
called an oracle5.  

 

 

                                                           
5 For a sketchy description of the oracle, see, for example, Wikipedia 
(https://en.wikipedia.org/wiki/Test_oracle or https://en.wikipedia.org/wiki/Black-box_testing). 

https://en.wikipedia.org/wiki/Test_oracle
https://en.wikipedia.org/wiki/Black-box_testing


Open Journal for Information Technology, 2018, 1(2), 25-36. 

______________________________________________________________________________________________ 

31 

3.3.3 Check cases 

Having an exemplar method, one can trace all partial cases it processes. Since all 
inputs from an equivalence class are interchangeable, the representatives can be selected 
randomly.  

Now that we have a set of exemplar inputs and an exemplar method, we easily produce 
the corresponding set of exemplar outcomes, each of these can consist of more than one “correct” 
output (see Section 2.3.1 Correct or incorrect?) 

Let a check case be a pair of some exemplar input and the corresponding exemplar 
outcome.  We refer to a pack of check cases as a check set.  Here we follow the analogy with test 
cases and test sets in programming6.   

Mathematically, a check case is a set of points representing a section of the domain of 
the functional M. In common words, a check case is a sub-problem of the initial problem where 
all variables in the D, C and R parts have concrete values.   

 

3.3.4 Checking and judging 

Having an exemplar input and the corresponding exemplar output, we apply the 
method under checking to the exemplar inputs, get outputs, and compare each acquired output 
with the corresponding exemplar output or the exemplar outcome.  

If the problem admits only finite number of correct answers, the comparison can be 
easily performed by verifying the coincidence (see Sections 1.3 Power of the output and 2.3.3 
Check cases).  In this case, the exemplar outcome consists of one or several exemplar outputs.  Let 
us also note that a poly-dimensional output brings almost no difference into the result-checking 
procedure.  

The case of an infinite |R| is more difficult. We cannot practically list all possible 
outputs; therefore, the “comparison” should mean performing a special checking formula, which 
depends on the type of the valid outputs.  For example, we can ascertain that “a real Z belongs to 
the [0..100] interval” by checking that both Z ≥ 0 and Z ≤ 100 are true. A poly-dimensional 
output can demand more complex formulas.  For example, the result “a point on a plain with 
coordinates (x, y) belongs to the circumference with the center in (0, 0) and radius A” can be 
checked with the help of the x2 + y2 = A2 formula7.   

If the author of the problem would rather avoid such difficulties, the problem’s 
statement should be revised and the type of the output changed.  

If the acquired output coincides with an example output (when |R| if finite) or meets 
the differently stated conditions (when |R| if infinite), the check case result is correct. Otherwise, 
it is incorrect.   

After all check cases are processed; a judgment about the correctness of the whole 
method can be formed. And there are two ways for this.   

                                                           
6 Mostly, experts in programming (see, for example, Myers, 1979, 2011, Singh, 2012, or Spillner, 2014) use 
the term test suite to name a pack of test cases. Still, ISO/IEC/IEEE 24765:2010 International Standard – 
Systems and software engineering – Vocabulary does not mention this word at all.  Instead, it uses the test 
set (3.3091).  So, we use the test set as the synonym of the test suite, too.   
7 More accurately, this formula should look like the pair of inequations  A2 – e ≤  x2 + y2 ≤ A2+ e, where e 
is an admissible (and strictly specified in the problem’s description) error.  
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The first way is the dichotomy “all check case results are correct” vs. “at least one 
check case result is incorrect”. The method is considered correct if and only if all its check case 
results are correct.  

The second way is a gradation based upon the number of correct check case results.  
The metric for this gradation can be determined in various ways. For example, in an equipollent 
metric, each check case gives 1 point or 100/n percent of the result. On the other hand, in a 
weighted metric, check cases make different contributions to the result. On this way, a method can 
be more correct or less correct than the other method, according to their metric values.  

 

4. Problem complexes 

Now let us look at a problem as the subject for the automated checking.   

The problem complex should include: 

 Description of the problem,  

 Specifications of a valid input and output,  

 A check set, which is a pack of exemplar input-output pairs, 

 An exemplar solution method. 

The first and the second parts are “exterior”. Contestants may see them. The third and 
the fourth parts, on the contrary, are for inner use of checkers and judges only.  

The last two items are discussed in Section 2, now let us consider the remained two.  

 

4.1 Problem’s description 

The structure of descriptions of programming problems has been studied by 
Andreyeva (2002, in Russian). Here we repeat some of those results.  

The full description of a problem must contain, explicitly or implicitly, the following 
parts: 

 Introduction. A more or less detailed characterisation of the subject domain. 

If this part is omitted, the problem is already formalized (such problems are often 
called dry).   

It is important that, with the help of different Introduction parts, the same base 
(formalized) problem can produce several seemingly not similar problems. Their 
descriptions can have nothing in common at all; still, they are the same problem and 
their solutions can be checked by the same check set.  

 Definitions, agreements, terms, if necessary. 

This part can be omitted if the problem only uses commonly known notions.  Still, 
putting anything by default can cause difficult-to-locate errors and 
misunderstandings.  

 Statement. A formalized presentation of the problem, its conditions and 
restrictions. 
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If this part is omitted, the problem needs formalization (as if it just has emerged from 
some informal subject field).  Nonetheless, the Task part always can serve as a clue 
for formalization.  

 Task.  Requirements whose fulfilment means that the problem is solved. 

This part cannot be omitted.   

 Formats for the input and output data. Definition of the way to write down 
the input variables (if any) and the results. 

This part is important not only for programming problems but also in tests and quizzes 
as well.  

 Example of a correctly written down solution and result.  

This part is not obligatory; still, it is strongly recommended that it is provided.  

If any of these parts is omitted or feeble then understanding and solving of the 
problem, checking of the acquired results can become much more difficult. Mistakes, inaccuracies, 
ambiguities, inconsistencies, conflicts between parts will necessarily lead to an erroneous solution 
of the problem (Andreyeva, 2002).  

 

4.2 Specifications 

All variables must be listed in the Input Specifications subsection of a problem 
complex (see Section 3. Problem complexes); for all of them, the type and the bounds must be 
specified.  Still, variables of complicated types may have an undefined length (see Section 1.2.4 
Indefinite length of the input). This is mostly stated in the Formats for the input and output 
data section (see Section 3.1 Problem’s description).  

Input and output data specifications, restrictions and clauses are specified in the 
problem’s description written in a natural language. A textual analysis can automatically extract 
the preliminary specification list, which should be revised manually (Andreyeva, 2018a).  

 

5. Automation 

Systems for the automated checking of solutions imply some restrictions on the types 
and wording of the problems. This also demands a higher discipline from authors of all parts of a 
problem. The special systems for the automated preparation of program complexes can reduce 
the number of possible errors, ambiguities, and inconsistencies. 

 

5.1 Preparation of problem complexes 

The process of preparing a problem complex is iterative: creating or changing each 
part (see Section 3. Problem complexes) can impel changes in any other parts.   

Stage 1.  According to the original idea of the problem, the author of the problem’s 
description 

(a) defines restrictions R on all variables in use;  
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(b) makes a preliminary decomposition D* of the input data domain D into 
equivalence classes showing all possible partial cases8;  

(c) sets specifications S for the input and output data.  

Stage 2. From specifications S and decomposition D*, a check set CS is prepared.  
This can be done manually or automatically with the help of a test-preparing system (see Section 
4.2. Automated systems for preparation of problem complexes). 

Stage 3. An exemplar solution ES is written (manually) and is debugged with the help 
of the check set CS.  

In order to reduce the number of possible errors, it is recommended that problem 
complexes are created collegially. If two authors А1 and А2 write two different exemplar solutions 
ES1 and ES2 and use two check sets CS1 and CS2 for debugging, both of them fulfil stages 1 to 3, 
and then Stage 4 arises.  

Stage 4. Two check sets are compared and combined. Both solutions ES1 and ES2 
must be tested on the united check set CS = CS1 U CS2. If no cross-errors were detected, it is 
necessary to ascertain that this united check set agrees with the final decomposition D and meets 
the final specifications S. Most likely, the united check set CS will be superfluous; and, therefore, 
some surplus check cases should be excluded.  

The 4th stage can also be useful for the individual preparation of a problem complex.  
The author’s initial check set and the automatically generated check set can be treated as CS1 and 
CS2. 

 

5.2 Automated systems for preparation of problem complexes 

Automated systems for preparation of problem complexes (ASPPCs) are described by 
Andreyeva (2018b, in Russian). The important part of an ASPPC, the automated system for the 
generation of test sets (ASGTS) was also studied by Andreyeva (2016). Here we translate some of 
those results. 

ASPPCs make preparation of problem complexes easier and more accurate and 
eliminate the amount of possible errors, especially if the problem’s description, specifications, the 
check set, and the exemplar solution are created collegially.  

At Stage 1 (see Section 4.1 Preparation of problem complexes), an ASSPPC should: 

 Extract a preliminary set of specifications S0 from the description of the problem 
(see Sections 3.1 Problem’s description and 3.2 Specifications) by means of the textual 
analysis, 

 Check the consistency of specifications, 

 Extract possible information about boundaries, exceptional points and so on from 
the problem’s description and specifications S0, 

 Construct a preliminary partition P of the valid data domain D into equivalence 
classes (basing on the specifications S0 and additional information provided by the 
author(s) of the problem), 

 Compare, join and intersect partitions P1 and P2, 

                                                           
8 On the very first stage, it is impossible to use the exemplar solution since it is not created yet.  



Open Journal for Information Technology, 2018, 1(2), 25-36. 

______________________________________________________________________________________________ 

35 

At Stage 2, an ASSPPC should: 

 Create exemplar inputs basing on the partition P, 

 Ascertain that the author’s check set CS0 covers the partition P, 

 Verify that the check set CS0 meets specifications S0  and restrictions R. 

If the necessity to change the initial specification set S0 is detected, the process of 
creating an exemplar check set should be started anew, now basing on the renewed specification 
set S0

′.  

At Stage 3, with the exemplar outputs generated with the help of the exemplar 
solution (method), an ASSPPC should: 

 Check if the exemplar outputs meet the specifications S (which is the final version 
of the specification set), 

At Stage 4: 

 Define the equivalent check cases, 

 Propose variants of reducing the joint check set. 

 

6. Conclusion 

Our aim is to automate processes of preparing the problem complexes in any subject 
field, in order to make the automated checking easier and its use wider. 

We have considered the notions checking and correctness and have ascertained that 
not only programming problems but problems from other subject fields too can be checked 
automatically.   

We have studied processes that constitute the preparation of a contest or a quiz and 
the checking of their results and have shown which of these processes can be automated. 

We discussed the necessary parts of a full and consistent description of a problem and 
have proposed ways to reduce the number of possible author errors, ambiguities, and 
inconsistencies. 

We have shown that automated systems make the preparation of problem complexes 
easier and more accurate. 

The future aims of our work are (a) to design means for the coverage analysis of the 
partitions created automatically from exemplar solutions, (b) to develop the mathematical 
apparatus for operations with partitions of different types, (c) to create means of partition analysis 
in order to ascertain that all important equivalence classes inspired by the current subject field are 
considered, and (d) to develop means that can suggest additional partition variants basing on the 
analysis of the type, the power and the dimensions of the input data. 
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