

Center for Open Access in Science ▪ https://www.centerprode.com/ojit.html
Open Journal for Information Technology, 2018, 1(2), 25-36.

ISSN (Online) 2620-0627 ▪ https://doi.org/10.32591/coas.ojit.0102.01025a

© Authors. Terms and conditions of Creative Commons Attribution 4.0 International (CC BY 4.0) apply.

Correspondence: Tatiana A. Andreyeva, VLSI CAD Laboratory, A. P. Ershov Institute of Informatics
Systems, 6, Lavrentiev st., Novosibirsk, 630090, RUSSIAN FEDERATION. E-mail: ata@iis.nsk.su.

Automated Checking in Education

Tatiana A. Andreyeva

A. P. Ershov Institute of Informatics Systems, Novosibirsk
Siberian Branch of the Russian Academy of Sciences

Received 13 July 2018 ▪ Revised 25 September 2018 ▪ Accepted 2 October 2018

Abstract

This work concerns the automated checking of solutions in education. The article discusses the
structure of a problem as a whole body and of its parts, studies various check approaches,
introduces problem complexes, suggests methods for creating accurate and consistent problem
statements and check sets, and touches the automation of the preparation of problem sets and of
the checking processes.

Keywords: automated correctness checking, test case generation, text analysis.

1. Introduction

Systems for the automated checking of solutions have their origin in programming
contests. But today they become the means of automation of the teacher’s work. They can be useful
not only at programming classes. With their help, any teacher can organize a mini-contest or check
own tests and students’ works faster and easier.

Having the experience of using and creating the automated checking systems for the
programming problems, the author extends the corresponding approach onto the non-
programming problems and shows that they also can be checked automatically. In order to make
the automated checking easier for a wider range of users, its preparation also should be automated.

• Our aim is to make the automated checking of tests and contests easier for teachers.
• Problems from various fields can be checked automatically like the programming ones.
• The preparation of problems for a contest or a quiz should also be automated.
• Automated systems for preparation and checking are described (not very profoundly).

• Automation reduces the number of possible errors, ambiguities, and inconsistencies.

Section 1 contains the necessary mathematical notes along with glosses on what a
generalised problem, its solution method and results are. It also shows how the number of check
cases and the check approach depend on the amount and the type of the problem’s variable and
constant data, its conditions and restrictions.

Section 2 discusses various approaches to the checking of solutions.

In order to create full, explicit and consistent problems (not only for contests with the
automated checking of solutions but for all quizzes as well) it is necessary to realize the structure

https://www.centerprode.com/ojit.html
https://doi.org/10.32591/coas.ojit.0102.01025a
mailto:ata@iis.nsk.su

T. A. Andreyeva – Automated Checking in Education

26

of a problem as a union of a statement, specifications and checking means. These are considered
in Section 3. The important notion of the problem complex is also introduced here.

Section 4 is dedicated to questions of the automated preparation of the problem
complexes.

2. Mathematical and common-sense basis

2.1 Problem, solution and result

Let a problem be represented by a triad < D, C, R >, where D is known data, C is
conditions necessary for creating a correct solution, and R is unknown values to be found out
during solving. Then the solving method M is a function, which creates the result R from the initial
data D and the conditions C.

М: D  C  R.

Solution method (algorithm) is a sequence of inter-connected and inter-dependable
components (R1, … RN); each step Ri is based upon steps R[0…i - 1]. The sequence (R1, … RN) is
not bound to be strictly linear, on the contrary, in most cases it only can be depicted by a graph
structure.

Some people think that “to solve a problem” means “to find a correct answer” and
sometimes, if the solving method is obvious, they are almost right. Still, the method itself can be
the point to find. For example, in IQ tests (see, for example, Eysenck, 1962) and the like, an often
task is “find the rule and then apply it” and figuring out the rule is much more difficult than
retrieving the answer with the help of this rule. In this case, the outcome is not the result but only
the means to judge about the correctness of the invented method.

2.2 Power and dimension of the input

Domain D of all known data can be divided into two parts: invariables Dinv and
variables Dvar. Invariable data are stated in the problem’s description and never change. On the
contrary, variable data are provided by the check cases (see Section 2.3.3. Check cases) and can
change from case to case not only in value but in number, too.

2.2.1 No variables

Obviously, there exist problems with no variable input at all. Almost all non-
programming problems are like this. In such a case, the power | Dvar | = 0.

If such a problem is correctly stated, it must have the unique correct answer. As a rule,
if there are several correct answers, it means that the problem description is not full or consistent.
For example, a partial case is not correctly pointed out1 or no explicit specification of a suitable
output is provided2.

1 For illustration, consider the problem: “Two segments on a plane are given by coordinates of their ends.
Define their mutual position: (a) do not touch; (b) intersect; (c) partly overlap; (d) one of them contains
another”. It is obvious, that the partial case of a zero-length segment can meet both b and d variants. It
would be better to divide the output domain not into four but into three equivalence classes: “… (a) do not
touch (no common points); (b) intersect (1 common point); (c) partly or fully overlap (more than 1 common
point)”.
2 For example, in an English language test, one can give answers “I cannot…” or “I can’t…” Both are correct,
but if the output description is not worded accurately, a mistake can be reported erroneously.

Open Journal for Information Technology, 2018, 1(2), 25-36.

__

27

2.2.2 Variables as the means to split a problem

In programming, any “good” algorithm has to be mass-oriented, i.e. it must be potent
to solve not a single problem but a whole class of similar problems. Therefore, presence of a
variable input is characteristic for programming problems.

Still, problems with variable input data can be met not only in programming but in
other fields, too. For example, several variants of a quiz may include the same task with different
numeric values3.

If there are several variables V1, … VN, each of them having its own domain Di; then
the whole variable domain Dvar can be represented as a direct product of these domains:

Dvar = [D1× …× DN].

And the dimension of the domain Dvar is the sum of dimensions of D1, … DN:

dim Dvar = dim D1 + …+ dim DN.

If we take one value for each variable, we make a section of the domain Dvar. The initial
problem with a restricted input domain is also a problem, but with no variables now. Thus, we can
reduce a problem with a variable input to a problem with the invariable input.

2.2.3 Constant and known number of variables

Now let us consider one variable Vi. The dimension of its domain can vary in a wide
range from 1 to any value having the practical sense. In simple words, this dimension denotes the
number of variable’s components.

As a rule, the upper bound for possible dimensions of a variable’s domain is specified
explicitly for all variables in the problem’s description, it is known before the checking process is
started. It can be considered as a constant belonging to the invariable input Dinv.

Also, the upper bound for some variable can be specified not in the description but in
check cases. Then it belongs to Dvar, is a variable itself and, thus, must have an upper bound, too.
Let us call a changeable upper bound the sub-bound.

An example of such a situation is “N integers A1, … AN are given (1 < N < 100)…”.
Here variable A consists of N components A1, … AN and, therefore, its dimension equals to N.
Variable N is the sub-bound of the current dimension, and 100 is the invariable upper bound
common for all possible sub-bounds. Note that each Ai must have its own upper limit too, but this
example does not mention any.

A sub-bound is variable but becomes known when the check starts.

2.2.4 Indefinite length of the input

Now let us consider the case when the actual dimension of a variable’s domain stays
unknown until the end of the checking.

Example is “No more than 100 integers are given…” Here we do not know how many
components A1, … AN the actual input has. We can preliminary write all of them down and count
them; then we will know the current sub-bound N (not given but calculated). Thus, we return to

3 In such a case, each variant can be checked as an independent one and, therefore, can represent the single-
answer case.

T. A. Andreyeva – Automated Checking in Education

28

the case of a known sub-bound. On the other hand, we can process these components not using
the value of N at all. The difference can be illustrated by cycles:

for 1 to N do… and do… until <the end is detected>.

In programming, the second way is preferable since it means that the input file must
be read through only once. And the first way means that reading is performed twice, which is
inefficient if the file is large.

Another example of the situation when the number of variables must be retrieved from
the input is “A graph is specified by the list of its edges, which are pairs of vertex numbers”.

Let us note that theoretically both the number of variants and their range can be
infinite. Nonetheless, practically it is impossible.

2.3 Power of the output

The number of possible correct answers |R| is very important for our discussion of the
automated checking. Here we only mention the possible variants. And the influence of the
multiplicity of possible correct answers onto the checking process is discussed in Section 2.3.4
Checking and judging.

|R| = 0 means that the problem is stated erroneously. No correct answer is possible.
Nothing is to be checked. Such problems must not appear in any test, quiz or contest. Some ways
to avoid such errors are discussed in Section 3.1 Problem’s description.

|R| = 1 means that the solution exists and it is unique. In this case, the checking is
obvious and easy: it is sufficient to ascertain that the output coincides with the given exemplar
answer.

|R| > 1 means that the problem has several correct answers. There can be three cases:

 |R| is finite. For example, “The anterior part of a shoulder is called a collar bone
or a clavicle”.

 |R| is infinite but denumerable. For example, “Any even integer”.

 |R| is infinite and non-denumerable. For example, “Any real value from the
interval [0 .. 1]” or “Any point on the plane within the circle with the centre in (0, 0)
and radius 1”.

Let us note that restrictions of the computer data representation obviously reduce the
case of infinite (denumerable or non-denumerable) |R| to the case of finite |R| > 1. The only
difference between them is in approaches to the checking.

3. Checking and correctness

3.1 Solution: Method or result?

Now let us return to the difference between an outcome and a solution. What should
we check? Should the result or the method be of most interest?

The well-known joke (unfortunately, its author is unknown to us) illustrates that an
erroneous method also can produce a correct answer:

– Reduce the fraction 16/64.

– 1/4.

Open Journal for Information Technology, 2018, 1(2), 25-36.

__

29

– OK! How do you count?

– I’ve crossed out the 6’s above and below.

Thus, we have to remember that the aim of checking is to form a judgement about the
method not the outcome.

3.2 Method is a White box

So, how can we check a solution method?

One way is to check the description of the method. For example, “To find a Fibonacci
number, sum two previous Fibonacci numbers, starting from two units”. Or, mathematically, “For
any natural k > 1, Fibk = Fibk-1 + Fibk-2 , while Fib0 = Fib1 = 1”. These are two equivalent
descriptions of the same method.

Still, there can be equivalent but different methods. For example, in order to find the
greatest common divisor (G.C.D.) of two natural numbers, one can a) use the Euclidean algorithm4
or b) find all natural devisors for both numbers separately (by trying to divide them by each
natural), compare these sets of divisors, and find the greatest common one. These methods are
obviously equivalent, while the first one is much more efficient than the second.

If it is important that the solution method be a particular one, the author of the
problem can shift the focus from the result to the method: not “Find the G.C.D. of two naturals”
but “Describe the Euclidean algorithm of finding the G.C.D.”. In this new problem, what earlier
was a method (one of several possible ones) became the result.

Although there exist methods for automated verification (starting from Floyd (1967),
Hoare (1969) and Anderson (1979), these methods have been developed by their followers), our
aim is to make the checking easier for a wider circle of teachers. Therefore, we seek for less
complicated and laborious way of checking. The mentioned verification theory and methods are
the instruments for designers of the automated checking systems not for users of these systems.

So, let us consider another way of checking.

3.3 Method is a Black box

The other way to check a method is to inspect its behaviour: “if we feed a valid input,
what output shall we get?” This approach is called Black-box testing (was introduced by Ashby,
1956).

The theory of Black-box testing is well developed for computer programs (see, for
example, Ashby, 1956, Beizer, 1995 or Ponrod, 2014); we shall try to adopt some of its methods for
developing the theory of the automated checking in education.

3.3.1 Correct or incorrect?

How can we decide that the method under examination is correct? For the behavioural
approach, the answer is “a method is correct if and only if it always produces a correct outcome”.
But what is the correct outcome? It is the result of applying a correct method M to the valid input
data:

4 The Wikipedia (https://en.wikipedia.org/wiki/Euclidean_algorithm) gives its detailed description.

https://en.wikipedia.org/wiki/Euclidean_algorithm

T. A. Andreyeva – Automated Checking in Education

30

М: D  C  R.

Therefore, we need some exemplar method. We declare this exemplar method Mex correct
and check whether the method under examination is equivalent to Mex. In other words, we believe
that method M is correct if and only if, being applied to the same inputs, methods M and Mex

produce the same results.

To make the matter more intricate, there is a situation with multiple correct answers (see
Section 1.3 Power of the output). In the case of |R| > 1, the exemplar method should provide all
possible correct outputs while the method under examination may produce only one of them. So,
the equivalence should be not between two methods M and Mex but between the method M and
only a sub-method of the method Mex.

Note that we cannot prove correctness both of a method and of its outcome simultaneously.
We only can prove that two methods are or are not equivalent. Here is the source of unavoidable
difficulties: if the exemplar method is erroneous (intentionally or unintentionally), it produces the
erroneous outcome, which nonetheless is declared “correct”. Therefore, henceforth we call the
exemplar method’s outcome not correct outcome but exemplar outcome.

Irrespectively to its actual correctness or erroneousness, the exemplar outcome is the
base for judging about correctness of a method under examination. Therefore, it is important to
eliminate the possibility of errors in the exemplar method and the exemplar outcome. And here
an automated system for preparation of problem complexes can be of great use (see
Section 4.2 Automated systems for preparation of problem complexes).

3.3.2. Exemplar input and output

How can we get an exemplar outcome? Should we apply the exemplar method to all
possible inputs? Obviously, this way is too generous. It is sufficient to apply the exemplar method
only to some characteristic representatives.

The domain of valid inputs D can be split into equivalence classes. Input data belong
to the same equivalence class if they generate (with the help of exemplar method) the same (or
equivalent) outcomes. Some of these outcomes should be “good”, some “bad”. Each equivalence
class is considered to be a partial case. Only one representative from each partial case is sufficient
for the exemplar input (see, for example, Beizer, 1995, or Myers, 1979 or 2011).

If the domain D is infinite (see Section 1.2 Power and dimension of the input) than
some (or even all) of the equivalence classes can be infinite too. If the number of classes is finite,
getting one representative from each class forms a finite set of exemplar inputs. Still, there can be
infinite number of equivalence classes. In order to restrict this number, additional restrictions
should be imposed on the domain of valid input data.

The partition of the domain D into equivalence classes can be done manually basing
on the characteristics of the subject domain and the problem itself or automatically through the
inner properties of the exemplar method.

In programming, such exemplar method that predicts exemplar inputs and outputs is
called an oracle5.

5 For a sketchy description of the oracle, see, for example, Wikipedia
(https://en.wikipedia.org/wiki/Test_oracle or https://en.wikipedia.org/wiki/Black-box_testing).

https://en.wikipedia.org/wiki/Test_oracle
https://en.wikipedia.org/wiki/Black-box_testing

Open Journal for Information Technology, 2018, 1(2), 25-36.

__

31

3.3.3 Check cases

Having an exemplar method, one can trace all partial cases it processes. Since all
inputs from an equivalence class are interchangeable, the representatives can be selected
randomly.

Now that we have a set of exemplar inputs and an exemplar method, we easily produce
the corresponding set of exemplar outcomes, each of these can consist of more than one “correct”
output (see Section 2.3.1 Correct or incorrect?)

Let a check case be a pair of some exemplar input and the corresponding exemplar
outcome. We refer to a pack of check cases as a check set. Here we follow the analogy with test
cases and test sets in programming6.

Mathematically, a check case is a set of points representing a section of the domain of
the functional M. In common words, a check case is a sub-problem of the initial problem where
all variables in the D, C and R parts have concrete values.

3.3.4 Checking and judging

Having an exemplar input and the corresponding exemplar output, we apply the
method under checking to the exemplar inputs, get outputs, and compare each acquired output
with the corresponding exemplar output or the exemplar outcome.

If the problem admits only finite number of correct answers, the comparison can be
easily performed by verifying the coincidence (see Sections 1.3 Power of the output and 2.3.3
Check cases). In this case, the exemplar outcome consists of one or several exemplar outputs. Let
us also note that a poly-dimensional output brings almost no difference into the result-checking
procedure.

The case of an infinite |R| is more difficult. We cannot practically list all possible
outputs; therefore, the “comparison” should mean performing a special checking formula, which
depends on the type of the valid outputs. For example, we can ascertain that “a real Z belongs to
the [0..100] interval” by checking that both Z ≥ 0 and Z ≤ 100 are true. A poly-dimensional
output can demand more complex formulas. For example, the result “a point on a plain with
coordinates (x, y) belongs to the circumference with the center in (0, 0) and radius A” can be
checked with the help of the x2 + y2 = A2 formula7.

If the author of the problem would rather avoid such difficulties, the problem’s
statement should be revised and the type of the output changed.

If the acquired output coincides with an example output (when |R| if finite) or meets
the differently stated conditions (when |R| if infinite), the check case result is correct. Otherwise,
it is incorrect.

After all check cases are processed; a judgment about the correctness of the whole
method can be formed. And there are two ways for this.

6 Mostly, experts in programming (see, for example, Myers, 1979, 2011, Singh, 2012, or Spillner, 2014) use
the term test suite to name a pack of test cases. Still, ISO/IEC/IEEE 24765:2010 International Standard –
Systems and software engineering – Vocabulary does not mention this word at all. Instead, it uses the test
set (3.3091). So, we use the test set as the synonym of the test suite, too.
7 More accurately, this formula should look like the pair of inequations A2 – e ≤ x2 + y2 ≤ A2+ e, where e
is an admissible (and strictly specified in the problem’s description) error.

T. A. Andreyeva – Automated Checking in Education

32

The first way is the dichotomy “all check case results are correct” vs. “at least one
check case result is incorrect”. The method is considered correct if and only if all its check case
results are correct.

The second way is a gradation based upon the number of correct check case results.
The metric for this gradation can be determined in various ways. For example, in an equipollent
metric, each check case gives 1 point or 100/n percent of the result. On the other hand, in a
weighted metric, check cases make different contributions to the result. On this way, a method can
be more correct or less correct than the other method, according to their metric values.

4. Problem complexes

Now let us look at a problem as the subject for the automated checking.

The problem complex should include:

 Description of the problem,

 Specifications of a valid input and output,

 A check set, which is a pack of exemplar input-output pairs,

 An exemplar solution method.

The first and the second parts are “exterior”. Contestants may see them. The third and
the fourth parts, on the contrary, are for inner use of checkers and judges only.

The last two items are discussed in Section 2, now let us consider the remained two.

4.1 Problem’s description

The structure of descriptions of programming problems has been studied by
Andreyeva (2002, in Russian). Here we repeat some of those results.

The full description of a problem must contain, explicitly or implicitly, the following
parts:

 Introduction. A more or less detailed characterisation of the subject domain.

If this part is omitted, the problem is already formalized (such problems are often
called dry).

It is important that, with the help of different Introduction parts, the same base
(formalized) problem can produce several seemingly not similar problems. Their
descriptions can have nothing in common at all; still, they are the same problem and
their solutions can be checked by the same check set.

 Definitions, agreements, terms, if necessary.

This part can be omitted if the problem only uses commonly known notions. Still,
putting anything by default can cause difficult-to-locate errors and
misunderstandings.

 Statement. A formalized presentation of the problem, its conditions and
restrictions.

Open Journal for Information Technology, 2018, 1(2), 25-36.

__

33

If this part is omitted, the problem needs formalization (as if it just has emerged from
some informal subject field). Nonetheless, the Task part always can serve as a clue
for formalization.

 Task. Requirements whose fulfilment means that the problem is solved.

This part cannot be omitted.

 Formats for the input and output data. Definition of the way to write down
the input variables (if any) and the results.

This part is important not only for programming problems but also in tests and quizzes
as well.

 Example of a correctly written down solution and result.

This part is not obligatory; still, it is strongly recommended that it is provided.

If any of these parts is omitted or feeble then understanding and solving of the
problem, checking of the acquired results can become much more difficult. Mistakes, inaccuracies,
ambiguities, inconsistencies, conflicts between parts will necessarily lead to an erroneous solution
of the problem (Andreyeva, 2002).

4.2 Specifications

All variables must be listed in the Input Specifications subsection of a problem
complex (see Section 3. Problem complexes); for all of them, the type and the bounds must be
specified. Still, variables of complicated types may have an undefined length (see Section 1.2.4
Indefinite length of the input). This is mostly stated in the Formats for the input and output
data section (see Section 3.1 Problem’s description).

Input and output data specifications, restrictions and clauses are specified in the
problem’s description written in a natural language. A textual analysis can automatically extract
the preliminary specification list, which should be revised manually (Andreyeva, 2018a).

5. Automation

Systems for the automated checking of solutions imply some restrictions on the types
and wording of the problems. This also demands a higher discipline from authors of all parts of a
problem. The special systems for the automated preparation of program complexes can reduce
the number of possible errors, ambiguities, and inconsistencies.

5.1 Preparation of problem complexes

The process of preparing a problem complex is iterative: creating or changing each
part (see Section 3. Problem complexes) can impel changes in any other parts.

Stage 1. According to the original idea of the problem, the author of the problem’s
description

(a) defines restrictions R on all variables in use;

T. A. Andreyeva – Automated Checking in Education

34

(b) makes a preliminary decomposition D* of the input data domain D into
equivalence classes showing all possible partial cases8;

(c) sets specifications S for the input and output data.

Stage 2. From specifications S and decomposition D*, a check set CS is prepared.
This can be done manually or automatically with the help of a test-preparing system (see Section
4.2. Automated systems for preparation of problem complexes).

Stage 3. An exemplar solution ES is written (manually) and is debugged with the help
of the check set CS.

In order to reduce the number of possible errors, it is recommended that problem
complexes are created collegially. If two authors А1 and А2 write two different exemplar solutions
ES1 and ES2 and use two check sets CS1 and CS2 for debugging, both of them fulfil stages 1 to 3,
and then Stage 4 arises.

Stage 4. Two check sets are compared and combined. Both solutions ES1 and ES2
must be tested on the united check set CS = CS1 U CS2. If no cross-errors were detected, it is
necessary to ascertain that this united check set agrees with the final decomposition D and meets
the final specifications S. Most likely, the united check set CS will be superfluous; and, therefore,
some surplus check cases should be excluded.

The 4th stage can also be useful for the individual preparation of a problem complex.
The author’s initial check set and the automatically generated check set can be treated as CS1 and
CS2.

5.2 Automated systems for preparation of problem complexes

Automated systems for preparation of problem complexes (ASPPCs) are described by
Andreyeva (2018b, in Russian). The important part of an ASPPC, the automated system for the
generation of test sets (ASGTS) was also studied by Andreyeva (2016). Here we translate some of
those results.

ASPPCs make preparation of problem complexes easier and more accurate and
eliminate the amount of possible errors, especially if the problem’s description, specifications, the
check set, and the exemplar solution are created collegially.

At Stage 1 (see Section 4.1 Preparation of problem complexes), an ASSPPC should:

 Extract a preliminary set of specifications S0 from the description of the problem
(see Sections 3.1 Problem’s description and 3.2 Specifications) by means of the textual
analysis,

 Check the consistency of specifications,

 Extract possible information about boundaries, exceptional points and so on from
the problem’s description and specifications S0,

 Construct a preliminary partition P of the valid data domain D into equivalence
classes (basing on the specifications S0 and additional information provided by the
author(s) of the problem),

 Compare, join and intersect partitions P1 and P2,

8 On the very first stage, it is impossible to use the exemplar solution since it is not created yet.

Open Journal for Information Technology, 2018, 1(2), 25-36.

__

35

At Stage 2, an ASSPPC should:

 Create exemplar inputs basing on the partition P,

 Ascertain that the author’s check set CS0 covers the partition P,

 Verify that the check set CS0 meets specifications S0 and restrictions R.

If the necessity to change the initial specification set S0 is detected, the process of
creating an exemplar check set should be started anew, now basing on the renewed specification
set S0

′.

At Stage 3, with the exemplar outputs generated with the help of the exemplar
solution (method), an ASSPPC should:

 Check if the exemplar outputs meet the specifications S (which is the final version
of the specification set),

At Stage 4:

 Define the equivalent check cases,

 Propose variants of reducing the joint check set.

6. Conclusion

Our aim is to automate processes of preparing the problem complexes in any subject
field, in order to make the automated checking easier and its use wider.

We have considered the notions checking and correctness and have ascertained that
not only programming problems but problems from other subject fields too can be checked
automatically.

We have studied processes that constitute the preparation of a contest or a quiz and
the checking of their results and have shown which of these processes can be automated.

We discussed the necessary parts of a full and consistent description of a problem and
have proposed ways to reduce the number of possible author errors, ambiguities, and
inconsistencies.

We have shown that automated systems make the preparation of problem complexes
easier and more accurate.

The future aims of our work are (a) to design means for the coverage analysis of the
partitions created automatically from exemplar solutions, (b) to develop the mathematical
apparatus for operations with partitions of different types, (c) to create means of partition analysis
in order to ascertain that all important equivalence classes inspired by the current subject field are
considered, and (d) to develop means that can suggest additional partition variants basing on the
analysis of the type, the power and the dimensions of the input data.

Acknowledgements

The work was supported by the Russian Foundation for Basic Research grant RFBR
№ 18-07-01048.

T. A. Andreyeva – Automated Checking in Education

36

References

Anderson, R. B. (1979). Proving programs correct. John Wiley & Sons, Inc. (Chapter 5).

Andreyeva, T. (2002). Structure and classification of contest problems’ texts (Структура и классификация
текстов олимпиадных задач). Компьютерные Инструменты в Образовании, 3-4, 50-59 (in
Russian). http://ipo.spb.ru/journal/index.php?article/223/

 or http://ipo.spb.ru/journal/index.php?magazines/2002/34/e/.

Andreyeva, T. (2016). Automated generation of test sets. In: Science in the Modern Information Society IX:
Proceedings of the conference (pp. 110-112). North Charleston, USA, 1-2 August 2016.

Andreyeva, T. (2018a). Automated preparation of problem complexes. Материалы Международной
Научно-практической Конференции «Наука Сегодня: Теоретические и Практические
Аспекты», г. Вологда, 27 декабря 2017 г.: в 2 частях. Часть 1, 25-26 (in English). Retrieved
from http://volconf.ru/files/archive/01_27.12.2017.pdf.

Andreyeva, T. А. (2018b). Automated preparation of problem complexes for programming contests
(Автоматизированная подготовка задачных комплектов для олимпиад по
программированию). Наука. Информатизация. Технологии. Образование: материалы XI
международной научно-практической конференции. – Екатеринбург, 26 февраля-2 марта
2018 г. Екатеринбург, РГППУ, 10-23 (in Russian). Retrieved from
http://nito.rsvpu.ru/files/nito2018/nito2018.pdf.

Ashby, W. R. (1956). Introduction to cybernetics. Chapman & Hall.

Beizer, B. (1995). Black-box testing: Techniques for functional testing of software and systems. New York,
NY, USA: John Wiley & Sons, Inc.

Eysenck, H. J. (1962). Know your own I. Q. Penguin Books.

Floyd, R. W. (1967). Assigning meanings to programs. In: J. T. Schwartz (Ed.), Mathematical Aspects of
Computer Science. Proceedings of Symposium on Applied Mathematics. 19. American
Mathematical Society (pp. 19-32). ISBN 0821867288

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Communications of the ACM, 12(10),
576-580. https://doi.org/10.1145/363235.363259

ISO/IEC/IEEE 24765:2010 International Standard. Systems and software engineering – Vocabulary.
IEEE. https://doi.org/10.1109/IEEESTD.2010.5733835

Myers, G. J. (1979). The art of software testing. New York: John Wiley & Sons.

Myers, G. J., Badgett, T., & Sandler C. (2011). The art of software testing (3rd ed.). New York: John Wiley &
Sons.

Ponrod, C. (2014). The study of black-box testing technique for collateral management system. Mahidol
University Press.

Singh, Y. (2012). Software testing (Chapter 1.3.4.). Cambridge University Press.

Spillner, A., Linz, T., & Schaefer, H. (2014). Software testing fundamentals: A study guide for the certified
tester exam (4th ed.). Rocky Nook Inc.

http://ipo.spb.ru/journal/index.php?article/223/
http://ipo.spb.ru/journal/index.php?magazines/2002/34/e/
http://volconf.ru/files/archive/01_27.12.2017.pdf
http://nito.rsvpu.ru/files/nito2018/nito2018.pdf
https://doi.org/10.1145/363235.363259
https://doi.org/10.1109/IEEESTD.2010.5733835

