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Abstract 

 
Virtualization is the main technology that powers cloud computing and has enabled the execution 
of multiple applications in same physical hardware using virtual machines (VM) for efficient 
utilization of resources and energy savings. Although virtualization successfully isolates co-
resident VMs from a security perspective, it does not offer a guarantee from a performance 
interference perspective. This means that sharing of resources results in competition, which is 
the cause of performance interference. Performance interference is more pronounced in 
homogenous workloads, where applications workloads contend to the same shared resource. In 
this case, application workloads run for longer times due to reduced performance and thus 
consume more energy. To address this problem, a VM allocation policy should ensure that VM 
running homogeneous workloads is not co-located. In this paper, we propose a VM allocation 
algorithm called Minimum Interference First Fit (MFF), which co-locates dissimilar workloads. 
The algorithm clusters VMs using K-means based on resources usage. Before a VM is placed into 
a physical machine (PM), similarity index (SI) of all the active PMs is computed, the VM is then 
placed in a PM with least SI. MFF has been evaluated on a simulated data center using CloudSim 
Plus cloud simulator on application workloads logs obtained from a production data center. 
Results show that MFF outperforms well-known VM allocations algorithms such as first fit (FF), 
worst fit (WF) and best fit (BF) from an energy consumption perspective.    

 
Keywords: cloud computing, virtual machine allocation, k-means, virtualization, data center 
energy consumption, performance interference.   

 

 

1. Introduction 

The growing appetite for workload processing power has resulted in cloud service 
providers (CSP) putting up many data centers. Unfortunately, data centers consume a lot of 
electrical energy resulting in high operating costs (Rallo, 2014). Besides, excessive energy 
consumption has a negative impact on the environment, which is the emission of carbon dioxide 
gas to the environment (Anton, 2013). Not all the energy that goes into a data center does useful 
work, some goes to waste. There are a number of known causes of energy wastage in data centers 
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such as low level of server utilization, wastage of server idle energy and consolidation of 
homogeneous workloads (Chaima, 2014; Derdus, Omwenga & Ogao, 2019). The problem of low 
server utilization and wastage of idle energy has been addressed in a number of research work 
such as in (Anton, 2013; Delimitrou, 2015).  

Consolidation of workloads has an effect on performance and energy consumption 
issues. For instance, it has been shown that it is advantageous to co-located heterogeneous 
workload than homogenous workloads (Derdus, Omwenga & Ogao, 2019). Homogenous 
workloads have applications, which contend the same shared resource. Thus, if VMs run 
application workloads, which contend the same shared resource, the pressure put on that resource 
will make tasks to run longer because of reduced throughput. As a consequence, more energy is 
used (energy is a product of time and power). This is effect is known as performance interference. 
Although virtualization successfully isolates co-resident VMs from a security perspective, it does 
not offer a guarantee from a performance interference perspective (Tesfatsion, 2018). 
Performance interference can be very severe. For instance, network I/O bandwidth can vary by 
almost 50% due to inter-VM interference (Pu et al., 2010).  

The methods used to address the problem of performance interference include 
hardware partition and VM placement and allocation policies (Tesfatsion, 2018; Amri, Hamdi & 
Brahmi, 2017). In former, the physical hardware resources are divided to enable hosted VMs to 
have exclusive access the resources. In the latter, VM placement policies are used, where the 
incoming VM’s behavior is analyzed so as to co-locate VMs, which contend different resources. 
The commonly used bin packing based VM placement algorithms such as first fit (FF), worst fit 
(WF) and best fit (BF) are not suitable because they do not take into account VM characteristics 
before placement (Kumar, Sathasivam & Periyasamy, 2016; Dabbagh et al., 2015; Gohil et al., 
2016). For instance, FF places an incoming VM in the first active PM or host, which has enough 
resources to accommodate the VM. If no suitable host is found, a new PM is activated. In BF, all 
PMs are checked for residual resources and the incoming VM is placed in a PM, which will suffer 
least resource wastage. In WF, the incoming VM is placed in a PM with most residual resources.       

Various research works have been performed to address the problem of performance 
interference. Most of this research work is focused on either detecting, predicting or measuring 
performance interference in co-resident VMs with the goal of proposing a solution.   

Xu, Liu and Jin (2016) discovered that apart from performance interference caused by 
executing application workloads, the existence of heterogeneous hardware similar VM instances 
can be a source of performance variations. Based on this claim, the authors have proposed a 
system called Heifer, which predicts the performance of hosted applications in a similar VM 
instance considering the performance interference in different hardware. Heifer provisions VM 
instances from the best performing hardware based on the predicted performance interference.  

Chen et al. (2015) proposed a system called CloudScope, which is used in diagnosing 
performance interference among co-resident VMs. CloudScope measures performance 
interference using VM profiling information obtained from the hypervisor layer and then reassigns 
VMs to PMs in way that interference is minimized. CloudScope has been implemented on Xen and 
according to the authors, it achieves an average error of 9% in predicting interference and a 10% 
VM performance improvements as compared to Xen’s default scheduler. The authors also argue 
that CloudScope is lightweight with less computation needs as compared to other approaches, 
which uses online training.  

Amannejad, Krishnamurthy and Far (2015) proposed a machine learning based 
system for detecting if a web service running in hosted VMs is suffering from interference. The 
proposed system relies on VM customer accessible metric (such as transaction response time data 
collected by a web service) as a way of detecting performance degradation since hardware level 
metrics (such as CPU utilization) are only accessible by CSP. The actual performance values are 
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then compared to the expected performance. If performance interference is detected the system 
can mitigate it such as by using a different VM instance or using a different CSP. 

In this paper, we extend our work (in Derdus, Omwenga & Ogao, (2019)), by proposing 
a VM allocation algorithm that maps a VM to a PM, which is hosting less similar VMs. In our 
approach, interference is estimated by computing a value called similarity index, which is a 
measure of how similar a host is to an incoming VM.  

 

2. Materials and methods  

2.1 Cloud model and system process   

The target cloud deployment and service model for the proposed algorithm is a multi-
tenant public Infrastructure as a Service (IaaS) cloud. Users request VM resources and the VM is 
placed in a PM in CSP’s data centre. The user can then execute any type of applications in the VMs, 
and from a CSP’s perspective, applications are a black box host in a VM. However, a CSP can access 
a VMs profile (such as VM resources consumption) from the hypervisor layer and in turn analyze 
the behaviour of user host application (Amannejad, Krishnamurthy, & Far, 2015). Further, the 
proposed system process is shown in Figure 1. 

 

 

 

 

 

 

 

 

VM profiling: in this part, the resource usage of the VM is monitored and recorded 
over a period. This is done by the CSP via the virtualization layer. The collected data forms the 
historical data, which fed into a VM classifier. This is possible and has been demonstrated in 
(Wajid, et al., 2016)    

VM classification: this component receives historical VM resource usage from a 
profiling database and then classifies VM based on resource usage. In this paper, we have used k-
means to classify VMs based on the following features: 

 Average CPU usage – the average CPU used by a VM for the entire period 
of profiling.  

 Average memory usage – the average RAM used by a VM for the entire 
period of profiling.  
 

The choice of the k-means clustering algorithm is because of its success in clustering 
workloads in previous research such as the work by Alam, Shakil and Sethi (2016), Yousif and Al-
Dulaimy (2017) and Di, Kondo and Cappello (2014). In the following sections, we will explain how 
k-means was applied in a dataset of choice.  

VM mapping: the VM mapping component receives a VM and the class to which it 
belongs and then maps it to the appropriate PM. This is the component, which runs our algorithm. 
The algorithm logic has been explained in a later section.  

VM profiling  VM classification   VM mapping   

Power calculation  

Figure 1: Proposed system process 
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Power calculation: this component computes the total amount of power used to 
execute VM workloads for a given VM scheduling algorithm. It is important to calculate this power 
because the aim of our algorithm is to reduce power consumption. Power, PT, is computed 
according to equation 1.  

𝑃𝑇 = ∑((𝑃𝑖
𝑝

− 𝑃𝑖
𝑏)

𝑛

𝑖=1

∗ (
𝑁𝑖

100
) + 𝑃𝑖

𝑏 ,      (1) 

where n is the number of hosts in a data center, Pp is the peak power consumption of 
the ith host, Pb is the host’s idle power and N is the percentage CPU utilization of the host. Energy, 
E, computed as shown in equation 2. 

𝐸 = 𝑃𝑇,                              (2) 

where P is equivalent to PT (measured in watts) and T is a time (in seconds) interval. 

 

2.2 Dataset used 

The dataset used in this paper is called c and is obtained from the Grid Workload 
Archive (GWA) (Delf University of Technology, 2018). The dataset is used in the following three 
ways: (1) for clustering purposes i.e. to demonstrate the use of k-means in clustering application 
workloads as well as the existence of groups of VMs, (2) to aid in determining characteristics of a 
data center to be used in evaluating our proposed algorithms, and (3) to aid in determining 
resource demands of VMs used to execute workloads in the process of evaluation. Materna trace 
is obtained from a VMware ESX environment consisting of 49 Hosts, 69 CPU cores and 6780 GB 
memory. This trace data is packaged in CSV files and it shows resources (such as memory, 
processor and storage) assigned to VMs and the resources that were actually used by the VMS. 
Materna trace consists of three different traces obtained from the infrastructure during three 
different times. The first trace, which has been used in this paper, consists of 520 VMs. Thus, there 
are 520 CSV files, each showing resources allocated and resources actually used by the VMs. 
Different VMs were allocated different resources.  For instance, storage capacity ranged from 54 
GB – 138 GB, memory was either 2 or 4 or 8 or 16 GB whereas a number of CPU cores were either 
1 or 2 or 4 or 8. CPU utilization also showed the percentage usage in MHz. Resources allocated to 
VMs did not change the entire period of profiling. On the other hand, resources actually used by 
VMs varied the entire period. We have used the average VM resource usage to represent VM 
resource usage for the entire profiling period. Thus, we have created one CSV file with 520 records 
showing VM resource usage averages from the 520 CSV files. Classes of VMs are created via k-
means using average memory usage and average CPU usage as a feature set.    

 

2.3 Algorithm design 

This algorithm determines the PM to host a VM, based on the VM’s class. The 
algorithm minimizes the number of VMs of a similar class running in the same PM. The algorithm 
can be summarized using the following steps and the flow chart shown in Figure 2.  

Step 1: From all host machines (PMs), identify all PMs with enough 
resources to accommodate the incoming VM. This is the candidate 
host list.  

Step 2: Compute the similarity, S, of the incoming VM with each of the 
candidate hosts. S is computed according to equation 3. 

Step 3: Sort the candidate host list in ascending order using S.  
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Step 4: Place incoming VM in the first host of the sorted candidate host list. 

𝑆 =
𝑖

𝑗
                                (3) 

where i is the number of VMs in a particular host, which belong to the same class as 
the incoming host and j is the total of VMs in that host. 

 

Figure 2: Flow chart for the proposed algorithm 

 

2.4 Algorithm evaluation 

Our algorithm is evaluated using GWA-T-13 Materna (explained earlier) on CloudSim 
Plus simulator, CloudSim Plus is a java-based cloud simulator forked from CloudSim (Rodrigo et 
al., 2011; Manoel et al., 2017). CloudSim Plus is easier to use because it follows software 
engineering standards with code duplication entirely removed. CloudSim Plus perfectly emulates 
a cloud datacenter – it has the following components; a Cloudlet, VM, Broker, Host and 
Datacenter. A cloudlet is similar to user applications, which are executed inside VMs. VMs are held 
in hosts, which are typically servers in a datacenter. A datacenter is comprised of hardware with 

physical computing resources and all the software that is used to manage the hardware. CloudSim 
Plus framework allows the creation of the aforementioned components in Java code. It also 
provides interfaces and abstract classes, which can be implemented and extended respectively, to 
enable the creation of own algorithm to determine how VMs are mapped to PMs. Some of the 
commonly used VM allocation algorithms such as FF, WF and BF have been implemented in the 
default installation of CloudSim Plus simulator. In this work, we have simulated a datacenter with 
49 hosts and 520 VMs. The datacenter has 69 CPUs (454 cores) and 6780 GB of memory. The 
memory and CPU allocation to each VM is in line with GWA-T-13 Materna dataset. The cloudlets 
are also simulated to consume the same amount of resources depicted in the workload. The idle 
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power for each host is set at 60% of the host’s peak power. For algorithm implementation, we have 
created a class, which inherits from VmAllocationPolicyAbstract and implemented the algorithm 
in a method called findHostForVm. The workload depicted in the dataset is then executed in the 
datacenter using FF, WF, BF and MFF VM allocation algorithms in turn. At the end of each 
execution, energy consumption by the data center is recorded.    

 

3. Results and discussion 

The results presented and discussed in this section relates to the outcome of clustering 
of the used dataset for the purpose of determining VM allocation and the performance of the 
proposed algorithm as compared to other algorithms. Figure 3 shows the clustering results of 
GWA-T-13 Materna. Indeed, it shows that there existed groups of VMs based on VM resources 
consumption (CPU and memory). K-means revealed the existence of 4 groups, which can be 
described as extra small VMs, small VMs, medium VMs and large VMs. The population of each 
group and a description of the VM groups have been summarized in Table 1.  

Table 1. Population and description of VM groups resulting  
from clustering GWA-T-13 Materna dataset 

VM Cluster group 
VM population 

(number and %) 
VM group description 

Large VMs 1 (≈ 0.2%) 

We have considered this group to contain an outlier 
because there is only one member. The VM in this 
groups shows a high memory consumption, with 
moderate CPU consumption.  

Medium VMs 29 (≈ 5.6%) 
The VMs in this group shows a moderate memory 
consumption with varying CPU usage.   

Small VMs 96 (≈18.4%) 

The VMs in this group shows a moderate memory 
consumption with varying CPU usage. However, the 
memory demand for this group is lower compared to 
medium VMs.  

Extra small VM 394 (≈75.8%) 
The VMs in this group shows low consumption in both 
memory and CPU.  

 

Figure 3: Scatter plot showing results of clustering of GWA-T-13 dataset   
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Further, Figure 4 shows the amount of energy consumed by the datacenter (consisting 
of 46 hosts) while executing the workload using a different VM allocation algorithm. We compared 
our proposed algorithm, MFF with FF, BF and WF. From the results, it is noticeable that MFF 
consumes the least amount of energy (18766 joules). On the other hand, BF consumes the highest 
amount of energy to execute the same workload to completion (22674 joules). The reason for 
MFF’s better performance from an energy perspective is because it co-locates VMs, which content 
different computing resources (heterogeneous VM). This type of allocation reduces inter-VM 
interference caused by VM when they compete with hypervisor capacity. By ensuring that 
dissimilar VMs are co-located, all computing resources are used in a balanced manner, which also 
means that physical resources’ idle power is put into useful processing.     

 
4. Conclusion 

In this paper, we have proposed a VM allocation algorithm, MFF, for mapping VMs to 
PMs, based on historical resources consumption of VMs. MFF is motivated by the fact that inter-
VM interference of co-resident VM is reduced when the VMs content different computing 
resources. We have used a k-means clustering algorithm to identify groups of VMs in a dataset 
used. Simulated results show that MFF beats FF, BF and WF VM algorithms and we consider this 
an achievement. As future work, we plan to apply MFF to a wide range of real cloud workloads. 
We also plan to combine MFF and BF to further enhance resource utilization efficiency.   
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