![]() |
Center for Open Access in Science (COAS) OPEN JOURNAL FOR INFORMATION TECHNOLOGY (OJIT) ISSN (Online) 2620-0627 * ojit@centerprode.com |
Multi-Agent Adaptive e-Learning System Based on Learning Styles Faith Ngami Kivuva * kivuva.faith@ku.ac.ke * ORCID: 0000-0002-0473-0073 * ResearcherID: AAU-5510-2021 Elizaphan Maina * maina.elizaphan@ku.ac.ke * ORCID: 0000-0003-1917-9760 Rhoda Gitonga * gitonga.rhoda@ku.ac.ke * ORCID: 0000-0002-9625-8086 * ResearcherID: AAU-6428-2021 Open Journal for Information Technology, 2021, 4(1), 1-12 * https://doi.org/10.32591/coas.ojit.0401.01001k LICENCE: Creative Commons Attribution 4.0 International License. ARTICLE (Full Text - PDF) |
ABSTRACT: KEY WORDS: personalized feedback, Moodle, intelligent agents, learning styles, recommendation. CORRESPONDING AUTHOR: |
REFERENCES: Alexandru, A., Tîrziu, E., Tudora, E., & Bica, O. (2015). Enhanced education by using intelligent agents in multi-agent adaptive e-Learning systems. Studies in Informatics and Control, 24(1), 13-22. https://doi.org/10.24846/v24i1y201502 Alexandru, A., Tîrziu, E., Tudora, E., & Bica, O. (2016). Enhanced education by using intelligent agents in multi-agent adaptive e-Learning systems. Studies in Informatics and Control, 24(1), 13-22. https://doi.org/10.24846/v24i1y201502 Balasubramanian, V., & Margret Anouncia, S. (2018). Learning style detection based on cognitive skills to support adaptive learning environment – A reinforcement approach. Ain Shams Engineering Journal, 9(4), 895-907. https://doi.org/10.1016/j.asej.2016.04.012 Daoruang, B., Chaichomchuen, S., & Mingkhwan, A. (2018). An adaptive learning system based on proportional VARK to enhance learning achievement concept. The 4th Joint Symposium on Computational Intelligence (JSCI 4). Diaz, F. S., Rubilar, T. P., Figueroa, C. C., & Silva, R. M. (2018). An adaptive E-learning platform with VARK learning styles to support the learning of object orientation. EDUNINE 2018 - 2nd IEEE World Engineering Education Conference: The Role of Professional Associations in Contemporaneous Engineer Careers, Proceedings. https://doi.org/10.1109/EDUNINE.2018.8450990 El Fazazi, H., Elgarej, M., Qbadou, M., & Mansouri, K. (2021). Design of an adaptive e-learning system based on multi-agent approach and reinforcement learning. Engineering, Technology & Applied Science Research, 11(1), 6637-6644. https://doi.org/10.48084/etasr.3905 Fasihfar, Z., & Rokhsati, H. (2017). Study of application of intelligent agents in e-learning systems. Bull. La Société R. Des Sci. Liège, 86(February), 398-405. Hosni, H., El-Dosuky, M., & Eisa, M. (2020). Virtual learning environment and learning styles. Journal of Theoretical and Applied Information Technology, 98(17), 3595-3606. Imran Hussain. (2019). Pedagogical implications of VARK Model of Learning. Journal of Literature, Languages and Linguistics, 38(November), 33-37. Kolekar, S. V., Pai, R. M., & Manohara Pai, M. M. (2019). Rule-based adaptive user interface for adaptive E-learning system. Education and Information Technologies, 24(1), 613-641. https://doi.org/10.1007/s10639-018-9788-1 Kumar, A., Singh, N., & Ahuja, N. J. (2017). Learner characteristics based learning style models classification and its implications on teaching. Int. J. Pure Appl. Math. (IJPAM), 118(20), 175-184. Lakkah, S. El, Alimam, M. A., & Seghiouer, H. (2017). Adaptive e-learning system based on learning style and ant colony optimization. 2017 Intelligent Systems and Computer Vision, ISCV 2017. https://doi.org/10.1109/ISACV.2017.8054963 Leka, L., Kika, A., & Greca, S. (2016). Adaptivity in e-learning systems. RTA-CSIT, 135-139. McLeod, S. (2017). Kolb’s learning styles and experiential learning cycle. Simply Psychology. Nadrljanski, M., Vukić, D., & Nadrljanski, D. (2018). Multi-agent systems in e-learning. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics, MIPRO 2018 – Proceedings, October, 990-995. https://doi.org/10.23919/MIPRO.2018.8400181 Oskouei, R. J., Varzeghani, H. N., & Samadyar, Z. (2014). Intelligent agents: A comprehensive survey. International Journal of Electronics Communication and Computer Engineering, 5(August), 2278-4209. Pandey, A. (2017). Benefits of personalisation of elearning. https://www.eidesign.net/top-8-benefits-personalisation-elearning/. Wu, C. H., Chen, Y. S., & Chen, T. C. (2018). An Adaptive e-learning system for enhancing learning performance: Based on dynamic scaffolding theory. Eurasia Journal of Mathematics, Science and Technology Education, 14(3), 903-913. https://doi.org/10.12973/ejmste/81061 Zagulova, D., Boltunova, V., Katalnikova, S., Prokofyeva, N., & Synytsya, K. (2019). Personalized e-learning: relation between Felder-Silverman model and academic performance. Applied Computer Systems, 24(1), 25-31. https://doi.org/10.2478/acss-2019-0004
|
© Center for Open Access in Science