Center for Open Access in Science (COAS) OPEN JOURNAL FOR INFORMATION TECHNOLOGY (OJIT) ISSN (Online) 2620-0627 * ojit@centerprode.com |
Reinforcement Learning Approach for Adaptive e-Learning Based on Multiple Learner Characteristics Dan Oyuga Anne * danoyuga@gmail.com * ORCID: 0000-0003-2103-2928 Elizaphan Maina * maina.elizaphan@ku.ac.ke Open Journal for Information Technology, 2021, 4(2), 55-76 * https://doi.org/10.32591/coas.ojit.0402.03055o LICENCE: Creative Commons Attribution 4.0 International License. ARTICLE (Full Text - PDF) |
ABSTRACT: KEY WORDS: reinforcement learning, adaptive learning, learner characteristics. CORRESPONDING AUTHOR: |
REFERENCES: Aajli, A., & Afdel, K. (2017). Generation of an adaptive e-learning domain model based on a fuzzy logic approach. Proceedings of IEEE/ACS International Conference on Computer Systems and Applications, AICCSA, 1-8. https://doi.org/10.1109/AICCSA.2016.7945708 Almohammadi, K., & Hagras, H. (2013a). An adaptive fuzzy logic based system for improved knowledge delivery within intelligent E-learning platforms. IEEE International Conference on Fuzzy Systems, 1-8. https://doi.org/10.1109/FUZZ-IEEE.2013.6622350 Almohammadi, K., & Hagras, H. (2013b). An Interval Type-2 Fuzzy Logic Based System for Customised Knowledge Delivery within Pervasive E- Learning Platforms. 2878-2885. https://doi.org/10.1109/SMC.2013.490 Alshammari, M., Anane, R., & Hendley, R. J. (2014). Adaptivity in e-learning systems. Proceedings - 2014 8th International Conference on Complex, Intelligent and Software Intensive Systems, CISIS 2014, 79-86. https://doi.org/10.1109/CISIS.2014.12 Alshammari, M., Anane, R., & Hendley, R. J. (2015). Students’ satisfaction in learning style-based adaptation. Proceedings - IEEE 15th International Conference on Advanced Learning Technologies: Advanced Technologies for Supporting Open Access to Formal and Informal Learning, ICALT 2015, 2018(July), 55-57. https://doi.org/10.1109/ICALT.2015.56 Balasubramanian, V., Anouneia, S. M., & Abraham, G. (2013). Reinforcement learning approach for adaptive e-learning systems using learning styles. Information Technology Journal, 12,2306-2314. Chen, C. M., & Li, Y. L. (2010). Personalised context-aware ubiquitous learning system for supporting effective english vocabulary learning. Interactive Learning Environments, 18(4), 341-364. https://doi.org/10.1080/10494820802602329 Chen, S. Y., Huang, P. R., Shih, Y. C., & Chang, L. P. (2016). Investigation of multiple human factors in personalized learning. Interactive Learning Environments, 24(1), 119-141. https://doi.org/10.1080/10494820.2013.825809 Chrysafiadi, K., & Virvou, M. (2013). Student modeling approaches: A literature review for the last decade. Expert Systems with Applications, 40(11), 4715-4729. https://doi.org/10.1016/j.eswa.2013.02.007 Colchester, K., Hagras, H., & Alghazzawi, D. (2017). A survey of artificial intelligence techniques employed for adaptive educational systems within e-learning platforms. Journal of Artificial Intelligence and Soft Computing Research, 7(1), 47-64. https://doi.org/10.1515/jaiscr-2017-0004 Dalgarno, B. (2001). Interpretations of constructivism and consequences for Computer Assisted Learning. British Journal of Educational Technology, 32(2), 183-194. https://doi.org/10.1111/1467-8535.00189 Deeb, B., Hassan, Z., & Beseiso, M. (2014). An adaptive HMM based approach for improving e-Learning methods. 2014 World Congress on Computer Applications and Information Systems, WCCAIS 2014. https://doi.org/10.1109/WCCAIS.2014.6916638 Ding, W., Zhu, Z., & Guo, Q. (2018). A new learner model in adaptive learning system. 2018 3rd International Conference on Computer and Communication Systems (ICCCS), 1, 440-443. El Aissaoui, O., El Madani El Alami, Y., Oughdir, L., & El Allioui, Y. (2018). Integrating web usage mining for an automatic learner profile detection: A learning styles-based approach. 2018 International Conference on Intelligent Systems and Computer Vision (ISCV), 1-6. https://doi.org/10.1109/ISACV.2018.8354021 Ennouamani, S., & Mahani, Z. (2017). An overview of adaptive e-learning systems. 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Icicis, 342-347. https://doi.org/10.1109/INTELCIS.2017.8260060 Fenza, G., Orciuoli, F., & Sampson, D. G. (2017). Building adaptive tutoring model using artificial neural networks and reinforcement learning. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT), 460-462. https://doi.org/10.1109/ICALT.2017.124 Firte, A. A., Bratu, C. V., & Cenan, C. (2009). Intelligent component for adaptive e-learning systems. Proceedings – 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, ICCP 2009, 35-38. https://doi.org/10.1109/ICCP.2009.5284788 Guan, M., Jia, J., Yang, Y., & Chen, Q. (2013). Research on adaptive e-Learning system using technology of learning navigation. Proceedings of the 8th International Conference on Computer Science and Education, ICCSE 2013, Iccse, 24-29. https://doi.org/10.1109/ICCSE.2013.6553877 Hadullo, K., Oboko, R., & Omwenga, E. (2017). A model for evaluating e-learning systems quality in higher education in developing countries. International Journal of Education and Development Using Information and Communication Technology, 13(2), 185-204. https://doi.org/https://0-search-proquest-com.oasis.unisa.ac.za/docview/1952423514?accountid=14648 Hadullo, K., Oboko, R., & Onwenga, E. (2018). Status of e-learning quality in Kenya: Case of Jomo Kenyatta University of Agriculture and Technology postgraduate students. International Review of Research in Open and Distributed Learning, 19(1). https://doi.org/10.19173/irrodl.v19i1.3322 Hammad, J., Hariadi, M., Purnomo, M. H., & Jabari, N. (2018). E-learning and adaptive e-learning review. IJCSNS International Journal of Computer Science and Network Security, 18(2), 48-55. Havard, B., East, M. L., Prayaga, L., & Whiteside, A. (2016). Adaptable learning theory framework for technology-enhanced learning. Leadership and Personnel Management, February, 384-406. https://doi.org/10.4018/978-1-4666-9624-2.ch018 Huang, S., Yin, B., & Liu, M. (2017). Research on individualized learner model based on. https://doi.org/10.1109/ISET.2017.45 Hwang, A. G., Sung, H., Hung, C., & Huang, I. (2013). International forum of educational technology & society a learning style perspective to investigate the necessity of developing adaptive learning systems source. Journal of Educational Technology & Society, 16(2) Jang, B., Kim, M., Harerimana, G., & Kim, J. W. (2019). Q-learning algorithms: A comprehensive classification and applications. IEEE Access, 7, 133653-133667. https://doi.org/10.1109/ACCESS.2019.2941229 Kanimozhi, A. (n.d.). An adaptive e-learning environment centered on learner’ s emotional behaviour. Khalil, M. K., & Elkhider, I. A. (2020). Applying learning theories and instructional design models for effective instruction. 29605, 147-156. https://doi.org/10.1152/advan.00138.2015 Kolekar, S. V., Sanjeevi, S. G., & Bormane, D. S. (2010). Learning style recognition using Artificial Neural Network for adaptive user interface in e-learning. 2010 IEEE International Conference on Computational Intelligence and Computing Research, March 2016, 1-5. https://doi.org/10.1109/ICCIC.2010.5705768 Linecar, P., & Marchbank, P. (2020). INSPIRE XXV e-learning as a solution during unprecedented times in the 21st century. https://www.researchgate.net/publication/348169543_INSPIRE_XXV_e-Learning_as_a_Solution_during_Unprecedented_Times_in_the_21st_CenturyPROCEEDINGS. Liu, Z., Wang, Z., & Fang, Z. (2006). An agent-based e-learning assessing and instructing system. Proceedings - 2006 10th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2006, 1414-1419. https://doi.org/10.1109/CSCWD.2006.253194 Malpani, A. (2011). Personalized intelligent tutoring system using reinforcement learning. Siam Journal on Control, 561-562. Mejia, C., Gomez, S., Mancera, L., & Taveneau, S. (2017). Inclusive learner model for adaptive recommendations in virtual education. 0-1. https://doi.org/10.1109/ICALT.2017.101 Premlatha, K. R., & Geetha, T. V. (2015). Learning content design and learner adaptation for adaptive e-learning environment: a survey. Artif Intell. Rabat, I. (2016). Learning Environment. 1–5. Raj, N. S., & Renumol, V. G. (2021). A rule-based approach for adaptive content recommendation in a personalized learning environment: An experimental analysis. October 2018. https://doi.org/10.1109/T4E.2019.00033 Rajendran, R., Iyer, S., & Murthy, S. (2018). Personalized affective feedback to address students frustration in ITS. IEEE Transactions on Learning Technologies, XX(c), 1-12. https://doi.org/10.1109/TLT.2018.2807447 Rani, M., Vyas, R., & Vyas, O. P. (2017). OPAESFH: Ontology-based personalized adaptive e-learning system using FPN and HMM. IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2017-Decem, 2441-2446. https://doi.org/10.1109/TENCON.2017.8228271 Sabourin, J., Mott, B., & J., L. (2011). Modeling learner affect with theoretically grounded dynamic Bayesian networks. Proceedings of the Fourth International Conference on Affective Computing and Intelligent Interaction, 286-295. https://doi.org/10.1007/978-3-642-24600-5_32 Schott, F. (2015). University of Freiburg Department of Education. July 2018, 0-22. https://doi.org/10.1016/B978-0-08-097086-8.92032-4 Sethi, M. A., Lomte, S. S., & Shinde, U. B. (2017). Multimodal approach to identify learning strategies of visual and verbal learners. International Journal of Emerging Technologies in Learning, 12(10), 76-94. https://doi.org/10.3991/ijet.v12i10.6935 Sethi, M. A., & S Lomte, S. (2017). An interactive dynamic elearning framework for visual and verbal learners. International Journal of Computer Science and Engineering, 4(7), 3-13. https://doi.org/10.14445/23488387/ijcse-v4i7p102 Steinbacher, H.-P., & Hoffmann, K. (2015). The role of e-learning, advantages and disadvantages of its adoption in higher education. Proceedings of the 8th IADIS International Conference Information Systems 2015, IS 2015, 2(August), 227-231. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84944055689&partnerID=40&md5=435fa9ccaccc7717986ba5820ce3a3be. Sundayana, R., Herman, T., Dahlan, J. A., & Prahmana, R. C. I. (2017). Using ASSURE learning design to develop students’ mathematical communication ability Using ASSURE learning design to develop students’ mathematical communication ability. October. Tadlaoui, M. A., Carvalho, R. N., & Khaldi, M. (2018). A learner model based on multi-entity Bayesian networks and artificial intelligence in adaptive hypermedia educational systems. 8(37). Ueno, M., & Okamoto, T. (2007). Bayesian agent in e-learning. Proceedings – The 7th IEEE International Conference on Advanced Learning Technologies, ICALT 2007, 1, 282-284. https://doi.org/10.1109/ICALT.2007.82 van Riesen, S. A. N., Gijlers, H., Anjewierden, A., & de Jong, T. (2018). The influence of prior knowledge on experiment design guidance in a science inquiry context. International Journal of Science Education, 40(11), 1327-1344. https://doi.org/10.1080/09500693.2018.1477263 Watkins, C. J. C. H., & Dayan, P. (1992) Q-Learning. Machine Learning, 8, 279-292. Whitehill, J., & Movellan, J. (2018). Approximately optimal teaching of approximately optimal learners. IEEE Transactions on Learning Technologies, 11(2), 152-164. https://doi.org/10.1109/TLT.2017.2692761 Wu, C. H., Chen, T. C., Yan, Y. H., & Lee, C. F. (2017). Developing an adaptive e-learning system for learning excel. Proceedings of the 2017 IEEE International Conference on Applied System Innovation: Applied System Innovation for Modern Technology, ICASI 2017, 1973-1975. https://doi.org/10.1109/ICASI.2017.7988583 Wu, D., Lu, J., & Zhang, G. (2015). A fuzzy tree matching-based personalized e-learning recommender system. IEEE Transactions on Fuzzy Systems, 23(6), 2412-2426. https://doi.org/10.1109/TFUZZ.2015.2426201 Yang, A. T., Hwang, G., Yang, S. J., Yang, T., Hwang, G., & Yang, S. J. (2016). International Forum of Educational Technology & Society Development of an Adaptive Learning System with Multiple Perspectives based on Students ’ Learning Styles and Cognitive Styles. Journal of Educational Technology & Society, 16(4). |
© Center for Open Access in Science