![]() |
Center for Open Access in Science (COAS) OPEN JOURNAL FOR INFORMATION TECHNOLOGY (OJIT) ISSN (Online) 2620-0627 * ojit@centerprode.com |
Data Protection in Healthcare Information Systems Using Cryptographic Algorithm with Base64 512 bits Lucas Ngoge * ORCID: 0000-0001-5537-8842 Kennedy Ogada Dennis Kaburu Open Journal for Information Technology, 2024, 7(1), 23-42 * https://doi.org/10.32591/coas.ojit.0701.03023n LICENCE: Creative Commons Attribution 4.0 International License. ARTICLE (Full Text - PDF) |
ABSTRACT: KEY WORDS: machine learning algorithms, classification, prediction, mapping, data visualization. CORRESPONDING AUTHOR: |
REFERENCES: Dikananda, et al. (2022). Comparison of decision tree classification methods and gradient boosted trees. TEM Journal, 11, 316-322 https://doi.org/10.18421/TEM111-39 Kanimozhi, et al. (2021). Crime type and occurrence prediction using machine learning algorithm.In International Conference on Artificial Intelligence and Smart Systems (ICAIS). Coimbatore, India. https://doi.org/10.1109/ICAIS50930.2021.9395953 Llaha, O. (2020). Crime analysis and prediction using machine learning. In 43rd International Convention on Information, Communication and Electronic Technology (MIPRO). Opatija, Croatia. https://doi.org/10.23919/MIPRO48935.2020.9245120 Mohamed, et al (2022). Supervised machine learning techniques. https://www.researchgate.net/publication/363870735_Supervised_Machine_Learning_Techniques_A_Comparison. Mahmud, et al. (2021). Crime rate prediction using machine learning and data mining. In S. Borah, S., Pradhan, R., Dey, & N., Gupta, P. (Eds.). Soft computing techniques and applications. Advances in Intelligent Systems and Computing, Vol. 1248. https://doi.org/10.1007/978-981-15-7394-1_5 National Police Service (NPS)(2022). Annual report. Nguyen, et al. (2018). Applying Random Forest Classification to map land use/land cover using Landsat 8 oli, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3/W4, pp 363-367. https://doi.org/10.5194/isprs-archives-XLII-3-W4-363-2018 Pratibha, et al. (2020). Crime prediction and analysis. 2nd International Conference on Data, Engineering and Applications (IDEA), Bhopal, India. https://doi.org/10.1109/IDEA49133.2020.9170731 Rim, P., & Liu, E. (2020). Optimizing the C4.5 Decision Tree Algorithm using MSD-Splitting, International Journal of Advanced Computer Science and Applications (IJACSA), 11(10). http://dx.doi.org/10.14569/IJACSA.2020.0111006 Saraiva, et al. (2022). Crime prediction and monitoring in Porto, Portugal, using machine learning, spatial and text analytics. ISPRS Int. J. Geo-Inf. https://doi.org/10.3390/ijgi11070400 Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Comput. Sci. 2. https://doi.org/10.1007/s42979-021-00592-x Sen, J., & Engelbrecht, A. (2021). Machine learning – Algorithms, models and applications. IntechOpen. https://doi.org/10.5772/intechopen.94615 Tahir, et al. (2021). Crime prediction using Naïve Bayes Algorithm. International Journal of Advance Research, Ideas, and Innovations in Technology, 7(4), V7I4-1713. www.IJARIIT.com. Theng, M., & Theng, D. (2020). Machine learning algorithms for predictive analytics: A review and new perspectives. https://www.researchgate.net/profile/Dr-Theng/publication/342976767_Machine_Learning_Algorithms_for_Predictive_Analytics_A_Review_and_New_Perspectives/links/5f0ff31fa6fdcc3ed70b5f3e/Machine-Learning-Algorithms-for-Predictive-Analytics-A-Review-and-New-Perspectives.pdf. Veena, et al. (2022). Cybercrime: Identification and prediction using machine learning techniques. Computational Intelligence and Neuroscience, 1-10. https://doi.org/10.1155/2022/8237421 Viet, et al. (2021). The Naïve Bayes Algorithm for learning data analytics, Indian Journal of Computer Science and Engineering, 12, 1038-1043. https://doi.org/10.21817/indjcse/2021/v12i4/211204191 Wasim, et al. (2020). Crime analysis and prediction using the K-Means clustering technique. Epra International Journal of Economic and Business Review, 05, 277-280. Yoganand, et al. (2020). An user-friendly interface for data preprocessing and visualization using machine learning models. International Research Journal of Engineering and Technology (IRJET), 7(3), 948-951. Zeineddine, et al. (2020). Enhancing prediction of student success: Automated machine learning approach. Computers & Electrical Engineering. 89. |
© Center for Open Access in Science