![]() |
Center for Open Access in Science (COAS) OPEN JOURNAL FOR INFORMATION TECHNOLOGY (OJIT) ISSN (Online) 2620-0627 * ojit@centerprode.com |
Algorithm for Semantic Network Generation from Texts of Low Resource Languages Such as Kiswahili Barack Wamkaya Wanjawa * ORCID: 0000-0003-0198-3179 Lawrence Muchemi * ORCID: 0000-0001-5911-5679 Evans Miriti * ORCID: 0000-0002-6949-7700 Open Journal for Information Technology, 2024, 7(2), 55-70 * https://doi.org/10.32591/coas.ojit.0702.01055w LICENCE: Creative Commons Attribution 4.0 International License. ARTICLE (Full Text - PDF) |
ABSTRACT: KEY WORDS: algorithm, low resource language, question answering, semantic networks, Kiswahili. CORRESPONDING AUTHOR: |
REFERENCES: Aflat (2020). Kiswahili Part-of-Speech Tagger - Demo AfLaT.org. Retrieved 14 December 2020, from https://www.aflat.org/swatag. Berners-Lee, T. (2006). Linked Data. Retrieved 6 July 2022, from https://www.w3.org/DesignIssues/LinkedData.html. Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56(1). Elsevier B.V. https://doi.org/10.1016/j.specom.2013.07.008 Brachman, R. J., & Levesque, H. J. (2004). Knowledge Representation and Reasoning. Knowledge Representation and Reasoning. Morgan Kaufmann. https://doi.org/10.1016/B978-1-55860-932-7.X5083-3 Clark, J. H., Choi, E., Collins, M., Garrette, D., Kwiatkowski, T., Nikolaev, V., & Palomaki, J. (2020). TyDi QA: A benchmark for information-seeking question answering in typologically diverse languages. ArXiv Preprint ArXiv:2003.05002. Contributors to Wikimedia projects (2021). Chelsea F.C. - Wikipedia. Retrieved 8 November 2021, from https://en.wikipedia.org/w/index.php?title=Chelsea_F.C.&oldid=1054654568. De Cao, N., Aziz, W., & Titov, I. (2019). Question answering by reasoning across documents with graph convolutional networks. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 1 (Long and Short Papers), 2306-2317. Gell-Mann, M., & Ruhlen, M. (2011). The origin and evolution of word order. Proceedings of the National Academy of Sciences, 108(42), 17290-17295. https://doi.org/10.1073/PNAS.1113716108 Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261-266. Kenya Ministry of Education (n.d.). Brief on Tusome Early Literary Programme. Retrieved 12 December 2020, from https://www.education.go.ke/images/Project-KPED/Brief%20on%20TUSOME%20.pdf. King, B. P. (2015). Practical Natural Language Processing for Low-Resource Languages. Retrieved 05 June 2020, from https://deepblue.lib.umich.edu/handle/2027.42/113373. Li, X., & Boucher, M. (2013). Under the Hood: The natural language interface of Graph Search. Retrieved 16 October 2020, from http://www.facebook.com/notes/facebook-engineering/under-the-hood-the-natural-language-interface-of-graph-search/10151432733048920. Li, Y., Tan, S., Sun, H., Han, J., Roth, D., & Yan, X. (2016). Entity disambiguation with linkless knowledge bases. 25th International World Wide Web Conference, WWW 2016, 1261-1270. https://doi.org/10.1145/2872427.2883068 Markovic, V., & Nelamangala, V. (2017). Building the Activity Graph, Part I. Retrieved 5 July 2020, from https://engineering.linkedin.com/blog/2017/06/building-the-activity-graph--part-i. Marno, H., Langus, A., Omidbeigi, M., Asaadi, S., Seyed-Allaei, S., & Nespor, M. (2015). A new perspective on word order preferences: the availability of a lexicon triggers the use of SVO word order. Frontiers in Psychology, 6, 1183. https://doi.org/10.3389/fpsyg.2015.01183 omniglot (2021). Swahili alphabet, pronunciation and language. Retrieved 8 September 2022, from https://omniglot.com/writing/swahili.htm. Pennington, J., Socher, R., & Manning, C. D. (2014). GloVe: Global vectors for word representation. EMNLP 2014 - 2014 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference, 1532-1543. Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettlemoyer, L. (2018). Deep contextualized word representations. ArXiv Preprint ArXiv:1802.05365. Piper, B., Destefano, J., Kinyanjui, E. M., & Ong’ele, S. (2018). Scaling up successfully: Lessons from Kenya’s Tusome national literacy program. Journal of Educational Change, 19(3), 293-321. RDF Grapher (2021). https://www.ldf.fi/service/rdf-grapher. Sánchez-Martínez, F., Sánchez-Cartagena, V. M., Antonio Pérez-Ortiz, J., Forcada, M. L., Espì A-Gomis, M., Secker, A., Coleman, S., & Wall, J. (2020). An English-Swahili parallel corpus and its use for neural machine translation in the news domain. November, 299-308. https://github.com/bitextor/bicleaner/. Singhal, A. (2012). Introducing the Knowledge Graph: things, not strings – Inside Search, 2013: 7/22/2013. http://insidesearch.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html. Song, L., Wang, Z., Yu, M., Zhang, Y., Florian, R., & Gildea, D. (2018). Exploring graph-structured passage representation for multi-hop reading comprehension with graph neural networks. ArXiv Preprint ArXiv:1809.02040. The Stanford Question Answering Dataset (2021). Retrieved 16 March 2021, from https://rajpurkar.github.io/SQuAD-explorer. treetagger. (2020). TreeTagger. Retrieved 14 December 2020, from https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger. Wanjawa, B., & Muchemi, L. (2021). Model for Semantic Network Generation from Low Resource Languages as Applied to Question Answering – Case of Swahili. 2021 IST-Africa Conference (IST-Africa), 1-8. Wanjawa, B. W., Wanzare, L. D. A., Indede, F., McOnyango, O., Muchemi, L., & Ombui, E. (2023). KenSwQuAD — A Question Answering Dataset for Swahili Low-resource Language. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(4), 1-20. Welbl, J., Stenetorp, P., & Riedel, S. (2018). Constructing datasets for multi-hop reading comprehension across documents. Transactions of the Association for Computational Linguistics, 6, 287-302. Wu, C., & Wu, T. (n.d.). Typologically Diverse QA: How many training examples do you need for a new language anyway? Yan, P., & Jin, W. (2017). Building semantic kernels for cross-document knowledge discovery using Wikipedia. Knowledge and Information Systems, 51(1), 287-310. https://doi.org/10.1007/s10115-016-0973-5 Yao, L., Mao, C., & Luo, Y. (2019). Graph convolutional networks for text classification. Proceedings of the AAAI Conference on Artificial Intelligence, 33, 7370-7377. |
© Center for Open Access in Science